Telegram Group & Telegram Channel
Почему AlphaDev не перевернул всё вверх дном?

Поговорим о недавно вышедшей от Deepmind статье, в которой обучали нейросеть для поиска более быстрого алгоритма сортировки. Я уже рассказывал про статьи AlphaZero и AlphaTensor, использующих в сущности тот же самый метод (советую изучить)

Особенности данного случая:
1) Пишем программу на ассемблере, генерируя команды по одной. Команды (действия) это элементарные операции сравнения, присваивания и т.д.
2) "Состоянием" в каждый момент является программа, сгенерированная на данный момент, и результат исполнения этой программы.
3) Наградой агента является штраф за длину программы (или время финального исполнения) и за неправильность итогового алгоритма, измеряемую тестами.

Какой результат?

Мы решаем по отдельности задачи создания алгоритма для сортировки массивов фиксированной длины. Начиная с длины 3 и заканчивая 8, выигрыш AlphaDev у человека составил 1, 0, 4, 3, 2, 1 операций. Интуитивно, а также по опыту AlphaTensor, кажется, что при увеличении размера входа нейросеть должна наращивать преимущество по сравнению с человеком, т.к. человеку гораздо сложнее работать с большим количеством объектов.

Почему здесь не так круто? Напишу свои гипотезы, буду рад почитать ваши мысли:

1) Нейросети с их многоразмерными неинтерпретируемыми представлениями не так хорошо дружат с дискретными командами в программировании. Это в принципе усложняет поиск.
2) Нам нужно сгенерировать более длинную последовательность команд, которая должна быть согласована между собой и порождать строгий алгоритм. Это мешает на больших входах.
3) Человек в принципе достаточно силён в программировании по сравнению с матричными перемножениями, поскольку это более близкая к человеческому мышлению вещь. Поэтому на маленьких входах мы уже смогли создать близкий к оптимальному алгоритм.

@knowledge_accumulator



tg-me.com/knowledge_accumulator/69
Create:
Last Update:

Почему AlphaDev не перевернул всё вверх дном?

Поговорим о недавно вышедшей от Deepmind статье, в которой обучали нейросеть для поиска более быстрого алгоритма сортировки. Я уже рассказывал про статьи AlphaZero и AlphaTensor, использующих в сущности тот же самый метод (советую изучить)

Особенности данного случая:
1) Пишем программу на ассемблере, генерируя команды по одной. Команды (действия) это элементарные операции сравнения, присваивания и т.д.
2) "Состоянием" в каждый момент является программа, сгенерированная на данный момент, и результат исполнения этой программы.
3) Наградой агента является штраф за длину программы (или время финального исполнения) и за неправильность итогового алгоритма, измеряемую тестами.

Какой результат?

Мы решаем по отдельности задачи создания алгоритма для сортировки массивов фиксированной длины. Начиная с длины 3 и заканчивая 8, выигрыш AlphaDev у человека составил 1, 0, 4, 3, 2, 1 операций. Интуитивно, а также по опыту AlphaTensor, кажется, что при увеличении размера входа нейросеть должна наращивать преимущество по сравнению с человеком, т.к. человеку гораздо сложнее работать с большим количеством объектов.

Почему здесь не так круто? Напишу свои гипотезы, буду рад почитать ваши мысли:

1) Нейросети с их многоразмерными неинтерпретируемыми представлениями не так хорошо дружат с дискретными командами в программировании. Это в принципе усложняет поиск.
2) Нам нужно сгенерировать более длинную последовательность команд, которая должна быть согласована между собой и порождать строгий алгоритм. Это мешает на больших входах.
3) Человек в принципе достаточно силён в программировании по сравнению с матричными перемножениями, поскольку это более близкая к человеческому мышлению вещь. Поэтому на маленьких входах мы уже смогли создать близкий к оптимальному алгоритм.

@knowledge_accumulator

BY Knowledge Accumulator




Share with your friend now:
tg-me.com/knowledge_accumulator/69

View MORE
Open in Telegram


Knowledge Accumulator Telegram | DID YOU KNOW?

Date: |

A project of our size needs at least a few hundred million dollars per year to keep going,” Mr. Durov wrote in his public channel on Telegram late last year. “While doing that, we will remain independent and stay true to our values, redefining how a tech company should operate.

Dump Scam in Leaked Telegram Chat

A leaked Telegram discussion by 50 so-called crypto influencers has exposed the extraordinary steps they take in order to profit on the back off unsuspecting defi investors. According to a leaked screenshot of the chat, an elaborate plan to defraud defi investors using the worthless “$Few” tokens had been hatched. $Few tokens would be airdropped to some of the influencers who in turn promoted these to unsuspecting followers on Twitter.

Knowledge Accumulator from cn


Telegram Knowledge Accumulator
FROM USA